Tag: en_gb

Track the Vendée Globe race with Python and QGIS

Create and visualize GIS data on the progress of the Vendée Globe 2024 race from official spreadsheets.
Learn More

GeoParquet in QGIS – smaller & faster files for the win!

tldr; Tired of working with large CSV files? Give GeoParquet a try!

“Parquet is a powerful column-oriented data format, built from the ground up to as a modern alternative to CSV files.” https://geoparquet.org/

(Geo)Parquet is both smaller and faster than CSV. Additionally, (Geo)Parquet columns are typed. Text, numeric values, dates, geometries retain their data types. GeoParquet also stores CRS information and support in GIS solutions is growing.

I’ll be giving a quick overview using AIS data in GeoPandas 1.0.1 (with pyarrow) and QGIS 3.38 (with GDAL 3.9.2).

File size

The example AIS dataset for this demo contains ~10 million rows with 22 columns. I’ve converted the original zipped CSV into GeoPackage and GeoParquet using GeoPandas to illustrate the huge difference in file size: ~470 MB for GeoParquet and zipped CSV, 1.6 GB for CSV, and a whopping 2.6 GB for GeoPackage:

Reading performance

Pandas and GeoPandas both support selective reading of files, i.e. we can specify the specific columns to be loaded. This does speed up reading, even from CSV files:

Whole fileSelected columns
CSV27.9 s13.1 s
Geopackage2min 12s 😵20.2 s
GeoParquet7.2 s4.1 s

Indeed, reading the whole GeoPackage is getting quite painful.

Here’s the code I used for timing the read times:

As you can see, these times include the creation of the GeoPandas.GeoDataFrame.

If we don’t need a GeoDataFrame, we can read the files even faster:

Non-spatial DataFrames

GeoParquet files can be read by non-GIS tools, such as Pandas. This makes it easier to collaborate with people who may not be familiar with geospatial data stacks.

And reading plain DataFrames is much faster than creating GeoDataFrames:

But back to GIS …

GeoParquet in QGIS

In QGIS, GeoParquet files can be loaded like any other vector layer, thanks to GDAL:

Loading the GeoParquet and GeoPackage files is pretty quick, especially if we zoom into a small region of interest (even though, unfortunately, it doesn’t seem possible to restrict the columns to further speed up loading). Loading the CSV, however, is pretty painful due to the lack of spatial indexing, which becomes apparent very quickly in the direct comparison:

(You can see how slowly the red CSV points are rendering. I didn’t have the patience to include the whole process in the GIF.)

As far as I can tell, my QGIS 3.38 ‘Grenoble’ does not support writing to or editing of GeoParquet files. So I’m limited to reading GeoParquet for now.

However, seeing how much smaller GeoParquets are compared to GeoPackages (and also faster to write), I hope that we will soon get the option to export to GeoParquet.

For now, I’ll start by converting my large CSV files to GeoParquet using GeoPandas.

More reading

If you’re into GeoJSON and/or PyGeoAPI, check out Joana Simoes’ post: “Navigating GeoParquet: Lessons Learned from the eMOTIONAL Cities Project”

And if you want to see a global dataset example, have a look at Matt Travis’ presentation using Overture data:

Learn More

(Fr) [Story] Oslandia x QWC : épisode 1 / 8

Sorry, this entry is only available in French.

Learn More

(Fr) [Story] Oslandia x QWC : épisode 6 / 8

Sorry, this entry is only available in French.

Learn More

[Case Study] Citizen science in Zurich with Camptocamp and Mergin Maps

Discover how Camptocamp, in collaboration with Zurich, used Mergin Maps and QGIS to map bird nesting sites, empowering volunteers to collect accurate survey data.
Learn More

Introducing QChat: a chat within QGIS!

In 2024, it's time to leave Teams and IRC behind to enter a new era where you can chat directly from QGIS with other GIS fellows. #GISChat #GISTribe
Learn More

(Fr) Du nouveau pour [CityBuilder] CityForge

Sorry, this entry is only available in French.

Learn More

New release for QField : 3.4 “Ebo”

Oslandia is the main partner of OPENGIS.ch around QField. We are proud today to forward the announcement of the new QField release 3.4 “Ebo”.

Main highlights

A new geofencing framework has landed, enabling users to configure QField behaviors in relation to geofenced areas and user positioning. Geofenced areas are defined at the project-level and shaped by polygons from a chosen vector layer. The three available geofencing behaviours in this new release are:

  • Alert user when inside an area polygon;
  • Alert user when outside all defined area polygons and
  • Inform the user when entering and leaving an area polygons.

In addition to being alerted or informed, users can also prevent digitizing of features when being alerted by the first or second behaviour. The configuration of this functionality is done in QGIS using QFieldSync.

Pro tip: geofencing settings are embedded within projects, which means it is easy to deploy these constraints to a team of field workers through QFieldCloud. Thanks Terrex Seismic for sponsoring this functionality.

QField now offers users access to a brand new processing toolbox containing over a dozen algorithms for manipulating digitized geometries directly in the field. As with many parts of QField, this feature relies on QGIS’ core library, namely its processing framework and the numerous, well-maintained algorithms it comes with.

The algorithms exposed in QField unlock many useful functionalities for refining geometries, including orthogonalization, smoothing, buffering, rotation, affine transformation, etc. As users configure algorithms’ parameters, a grey preview of the output will be visible as an overlay on top of the map canvas.

To reach the processing toolbox in QField, select one or more features by long-pressing on them in the features list, open the 3-dot menu and click on the process selected feature(s) action. Are you excited about this one? Send your thanks to the National Land Survey of Finland, who’s support made this a reality.

QField’s camera has gained support for customized ratio and resolution of photos, as well as the ability to stamp details – date and time as well as location details – onto captured photos. In fact, QField’s own camera has received so much attention in the last few releases that it was decided to make it the default one. On supported platforms, users can switch to their OS camera by disabling the native camera option found at the bottom of the QField settings’ general tab.

Wait, there’s more

There are plenty more improvements packed into this release from project variables editing using a revamped variables editor through to integration of QField documentation help in the search bar and the ability to search cloud project lists. Read the full 3.4 changelog to know more, and enjoy the release!

 

Contact us !

A question concerning QField ? Interested in QField deployment ? Do not hesitate to contact Oslandia to discuss your project !

 

Learn More

(Fr) Variabilisez vos profils QGIS avec QDT

Sorry, this entry is only available in French.

Learn More