Tag: qgis

Wrangling hundreds of GPS files with DuckDB, QGIS & Trajectools

The last time I preprocessed the whole GeoLife dataset, I loaded it into PostGIS. Today, I want to share a new workflow that creates a (Geo)Parquet file and that is much faster.

The dataset (GeoLife)

“This GPS trajectory dataset was collected in (Microsoft Research Asia) Geolife project by 182 users in a period of over three years (from April 2007 to August 2012). A GPS trajectory of this dataset is represented by a sequence of time-stamped points, each of which contains the information of latitude, longitude and altitude. This dataset contains 17,621 trajectories with a total distance of about 1.2 million kilometers and a total duration of 48,000+ hours. These trajectories were recorded by different GPS loggers and GPS-phones, and have a variety of sampling rates. 91 percent of the trajectories are logged in a dense representation, e.g. every 1~5 seconds or every 5~10 meters per point.”

The GeoLife GPS Trajectories download contains 182 directories full of .plt files:

Basically, CSV files with a custom header:

Creating the (Geo)Parquet using DuckDB

DuckDB installation

Following the official instructions, installation is straightforward:

curl https://install.duckdb.org | sh

From there, I’ve been using the GUI which we can launch using:

duckdb -ui

The spatial extension is a DuckDB core extension, so it’s readily available. We can create a spatial db with:

ATTACH IF NOT EXISTS ':memory:' AS memory;
INSTALL spatial;
LOAD spatial;

Reading a spatial file is as simple as:

SELECT * 
FROM '/home/anita/Documents/Codeberg/trajectools/sample_data/geolife.gpkg'

thanks to the GDAL integration.

But today, we want to do to get a bit more involved …

DuckDB SQL magic

The issues we need to solve are:

  1. Read all CSV files from all subdirectories
  2. Parse the CSV, ignoring the first couple of lines, while assigning proper column names
  3. Assign the CSV file name as the trajectory ID (because there is no ID in the original files)
  4. Create point geometries that will work with our GeoParquet file
  5. Create proper datetimes from the separate date and time fields

Luckily, DuckDB’s read_csv function comes with the necessary features built-in. Putting it all together:

CREATE OR REPLACE TABLE geolife AS 
SELECT 
  parse_filename(filename, true) as vehicle_id, 
  strptime(date||' '||time, '%c') as t, 
  ST_Point(lon, lat) as geometry -- do NOT use ST_MakePoint
FROM read_csv('/home/anita/Documents/Geodata/Geolife/Geolife Trajectories 1.3/Data/*/*/*.plt',
    skip=6,
    filename = true, 
    columns = {
        'lat': 'DOUBLE', 
        'lon': 'DOUBLE', 
        'ignore': 'INT', 
        'alt': 'DOUBLE', 
        'epoch': 'DOUBLE', 
        'date': 'VARCHAR',
        'time': 'VARCHAR'
    });

It’s blazingly fast:

I haven’t tested reading directly from ZIP archives yet, but there seems to be a community extension (zipfs) for this exact purpose.

Ready to QGIS

GeoParquet files can be drag-n-dropped into QGIS:

I’m running QGIS 3.42.1-Münster from conda-forge on Linux Mint.

Yes, it takes a while to render all 25 million points … But you know what? It get’s really snappy once we zoom in closer, e.g. to the situation in Germany:

Let’s have a closer look at what’s going on here.

Trajectools time

Selecting the 9,438 points in this extent, let’s compute movement metrics (speed & direction) and create trajectory lines:

Looks like we have some high-speed sections in there (with those red > 100 km/h streaks):

When we zoom in to Darmstadt and enable the trajectories layer, we can see each individual trip. Looks like car trips on the highway and walks through the city:

That looks like quite the long round trip:

Let’s see where they might have stopped to have a break:

If I had to guess, I’d say they stayed at the Best Western:

Conclusion

DuckDB has been great for this ETL workflow. I didn’t use much of its geospatial capabilities here but I was pleasantly surprised how smooth the GeoParquet creation process has been. Geometries are handled without any special magic and are recognized by QGIS. Same with the timestamps. All ready for more heavy spatiotemporal analysis with Trajectools.

If you haven’t tried DuckDB or GeoParquet yet, give it a try, particularly if you’re collaborating with data scientists from other domains and want to exchange data.

Learn More

[Blog] Best Practices for User Management in Mergin Maps

Avoid login sharing in Mergin Maps to stay secure, maintain project integrity, and unlock full workspace features with flexible user roles.
Learn More

[Case Study] Ensuring regulatory compliance for water distribution in Portugal

Discover how EDIA uses Mergin Maps and QGIS to digitize environmental compliance surveys across 130k+ hectares with reliable, offline-capable tools.
Learn More

QGISでベクタレイヤの座標系を変換する方法〜再投影の手順を解説〜 - QGIS LAB by MIERUNE

はじめにGISデータには「座標系(CRS:Coordinate Reference System)」が設定されています。QGISで地理情報を正確に表示・解析するためには、適切な座標系での処理が不可欠です。この記事では、QGISのプロセシングツール「ベクタレイヤを再投影」を使用して、レイヤの座標系を変換する方法を説明します。座標系の基本的な概念について詳しく知りたい方は、以下の記事をご覧ください。座...
Learn More

秋といえば…GISの秋!FOSS4G Hokkaido参加レポート - QGIS LAB by MIERUNE

はじめに2025年9月26日・27日に、FOSS4G Hokkaido 2025が開催されました。オープニングの様子FOSS4Gとは「Free and Open Source Software for Geospatial(地理空間情報技術のオープンソースソフトウェア)」の略称で、このイベントはオープンソースの地理空間技術に関する知識や情報を共有するカンファレンスです。FOSS4Gのイベントは日本...
Learn More

[Case Study] Involving communities in conservation through citizen science

Discover how the Green Giants project by VERDE engages local communities in conserving Portugal’s native forests through citizen science. Using Mergin Maps and QGIS, volunteers have mapped over 15,000 monumental trees, fostering collaboration, knowledge-sharing, and biodiversity protection.
Learn More

QFieldで写真や動画を添付する方法〜設定方法から現地調査での使い方まで〜 - QGIS LAB by MIERUNE

はじめに現地調査を行う際、調査で得た情報を属性に入力するだけでなく、現場の写真撮影が必要な場面も多いでしょう。QFieldでは、写真や動画、音声といったさまざまなファイルを地物に簡単に添付できます。この機能により、データ収集と管理の効率が大幅に向上します。QFieldで地物に写真が関連付けられている例(<a href="https://maps.gsi.go.jp/developm...
Learn More

現場でのデータ入力を効率化!QFieldで属性値を簡単に入力する方法 - QGIS LAB by MIERUNE

はじめにQFieldはQGISと近い環境を持ちながらも、スマホやタブレットで利用できる便利なアプリケーションです。ただし、現地調査では、効率的にデータを入力するために使いやすいインターフェースが重要です。QFieldの初期設定では属性データをキーボード入力する必要があり、これが入力ミスを招きやすい状況になっています。手動で入力する場合は入力ミスが発生する可能性(<a href="h...
Learn More

How we build Mergin Maps to run on your phone

Learn how Mergin Maps runs QGIS on mobile devices using 126+ C++ libraries. Discover our journey from custom bash scripts to vcpkg dependency management, making mobile GIS development more accessible for the community.
Learn More

[Blog] Create professional survey reports using QGIS Print Layout after field data collection

Learn how to turn Mergin Maps field data into professional QGIS reports using maps, tables, photos, and Atlas automation for stakeholder-ready results.
Learn More